Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 97(7): 1927-1941, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37154957

RESUMEN

Mitochondrial dysfunction is pivotal in drug-induced acute kidney injury (AKI), but the underlying mechanisms remain largely unknown. Transport proteins embedded in the mitochondrial inner membrane form a significant class of potential drug off-targets. So far, most transporter-drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC). Since it remains unknown to what extent AAC contributes to drug-induced mitochondrial dysfunction in AKI, we here aimed to better understand the functional role of AAC in the energy metabolism of human renal proximal tubular cells. To this end, CRISPR/Cas9 technology was applied to generate AAC3-/- human conditionally immortalized renal proximal tubule epithelial cells. This AAC3-/- cell model was characterized with respect to mitochondrial function and morphology. To explore whether this model could provide first insights into (mitochondrial) adverse drug effects with suspicion towards AAC-mediated mechanisms, wild-type and knockout cells were exposed to established AAC inhibitors, after which cellular metabolic activity and mitochondrial respiratory capacity were measured. Two AAC3-/- clones showed a significant reduction in ADP import and ATP export rates and mitochondrial mass, without influencing overall morphology. AAC3-/- clones exhibited reduced ATP production, oxygen consumption rates and metabolic spare capacity was particularly affected, mainly in conditions with galactose as carbon source. Chemical AAC inhibition was stronger compared to genetic inhibition in AAC3-/-, suggesting functional compensation by remaining AAC isoforms in our knockout model. In conclusion, our results indicate that ciPTEC-OAT1 cells have a predominantly oxidative phenotype that was not additionally activated by switching energy source. Genetic inhibition of AAC3 particularly impacted mitochondrial spare capacity, without affecting mitochondrial morphology, suggesting an important role for AAC in maintaining the metabolic spare respiration.


Asunto(s)
Lesión Renal Aguda , Translocasas Mitocondriales de ADP y ATP , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Células Epiteliales/metabolismo , Lesión Renal Aguda/metabolismo
2.
Sci Rep ; 12(1): 18551, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329098

RESUMEN

Digestion of dietary fibers by gut bacteria has been shown to stimulate intestinal mineral absorption [e.g., calcium (Ca2+) and magnesium (Mg2+)]. Although it has been suggested that local pH and short-chain fatty acid (SCFA) concentrations determine divalent cation absorption, the exact molecular mechanisms are still unknown. Therefore, this study aimed to determine the effects of SCFAs on intestinal Mg2+ absorption. We show that the butyrate concentration in the colon negatively correlates with serum Mg2+ levels in wildtype mice. Moreover, Na-butyrate significantly inhibited Mg2+ uptake in Caco-2 cells, while Ca2+ uptake was unaffected. Although Na-butyrate significantly lowered total ATP production rate, and resulted in increased phosphorylation of AMP-activated protein kinase (AMPK), inhibition of Mg2+ uptake by butyrate preceded these consequences. Importantly, electrophysiological examinations demonstrated that intracellular butyrate directly reduced the activity of the heteromeric Mg2+ channel complex, transient receptor potential melastatin (TRPM)6/7. Blocking cellular butyrate uptake prevented its inhibitory effect on Mg2+ uptake, demonstrating that butyrate acts intracellularly. Our work identified butyrate as novel regulator of intestinal Mg2+ uptake that works independently from metabolic regulation. This finding further highlights the role of microbial fermentation in the regulation of mineral absorption.


Asunto(s)
Butiratos , Magnesio , Humanos , Ratones , Animales , Butiratos/farmacología , Butiratos/metabolismo , Células CACO-2 , Magnesio/metabolismo , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo
3.
Brain ; 145(1): 45-63, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34849584

RESUMEN

Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedad de Leigh , Enfermedades Mitocondriales , Animales , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedad de Leigh/genética , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/genética , Fosforilación Oxidativa
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165727, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070771

RESUMEN

Mitochondrial complex I (CI), the first multiprotein enzyme complex of the OXPHOS system, executes a major role in cellular ATP generation. Consequently, dysfunction of this complex has been linked to inherited metabolic disorders, including Leigh disease (LD), an often fatal disease in early life. Development of clinical effective treatments for LD remains challenging due to the complex pathophysiological nature. Treatment with the peroxisome proliferation-activated receptor (PPAR) agonist bezafibrate improved disease phenotype in several mitochondrial disease mouse models mediated via enhanced mitochondrial biogenesis and fatty acid ß-oxidation. However, the therapeutic potential of this mixed PPAR (α, δ/ß, γ) agonist is severely hampered by hepatotoxicity, which is possibly caused by activation of PPARγ. Here, we aimed to investigate the effects of the PPARα-specific fibrate clofibrate in mitochondrial CI-deficient (Ndufs4-/-) mice. Clofibrate increased lifespan and motor function of Ndufs4-/- mice, while only marginal hepatotoxic effects were observed. Due to the complex clinical and cellular phenotype of CI-deficiency, we also aimed to investigate the therapeutic potential of clofibrate combined with the redox modulator KH176. As described previously, single treatment with KH176 was beneficial, however, combining clofibrate with KH176 did not result in an additive effect on disease phenotype in Ndufs4-/- mice. Overall, both drugs have promising, but independent and nonadditive, properties for the pharmacological treatment of CI-deficiency-related mitochondrial diseases.


Asunto(s)
Cromanos/farmacología , Clofibrato/farmacología , Complejo I de Transporte de Electrón/deficiencia , Longevidad/efectos de los fármacos , Enfermedades Mitocondriales/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Animales , Bezafibrato/farmacología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Humanos , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Actividad Motora/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/genética
5.
Front Psychiatry ; 10: 809, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803076

RESUMEN

Successfully navigating social interactions requires the precise and balanced integration of social and environmental cues. When such flexible information integration fails, maladaptive behavioral patterns arise, including excessive aggression, empathy deficits, and social withdrawal, as seen in disorders such as conduct disorder and autism spectrum disorder. One of the main hubs for the context-dependent regulation of behavior is cingulate cortex, specifically anterior cingulate cortex (ACC) and midcingulate cortex (MCC). While volumetric abnormalities of ACC and MCC have been demonstrated in patients, little is known about the exact structural changes responsible for the dysregulation of behaviors such as aggression and social withdrawal. Here, we demonstrate that the distribution of parvalbumin (PV) and somatostatin (SOM) interneurons across ACC and MCC differentially predicts aggression and social withdrawal in BALB/cJ mice. BALB/cJ mice were phenotyped for their social behavior (three-chamber task) and aggression (resident-intruder task) compared to control (BALB/cByJ) mice. In line with previous studies, BALB/cJ mice behaved more aggressively than controls. The three-chamber task revealed two sub-groups of highly-sociable versus less-sociable BALB/cJ mice. Highly-sociable BALB/cJ mice were as aggressive as the less-sociable group-in fact, they committed more acts of socially acceptable aggression (threats and harmless bites). PV and SOM immunostaining revealed that a lack of specificity in the distribution of SOM and PV interneurons across cingulate cortex coincided with social withdrawal: both control mice and highly-sociable BALB/cJ mice showed a differential distribution of PV and SOM interneurons across the sub-areas of cingulate cortex, while for less-sociable BALB/cJ mice, the distributions were near-flat. In contrast, both highly-sociable and less-sociable BALB/cJ mice had a decreased concentration of PV interneurons in MCC compared to controls, which was therefore linked to aggressive behavior. Together, these results suggest that the dynamic balance of excitatory and inhibitory activity across ACC and MCC shapes both social and aggressive behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...